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Motivated by a real-world application of quantum-dot cellular automata (QCA) and with the help
of Monte-Carlo simulations and analytic continuum theory, we have studied the corruption or error
process of a binary nano-bit model resulting from an interaction with stochastically independent
Brownian agents (BAs). Besides, the more specific link to a real-world application, in this work,
we have extended the scope of the study and have used the new technique to reproduce results
from previous works by Newman and Triampo [Phys. Rev. E 59, 5172 (1999) and Phys. Rev.
E 60, 1450 (1999)]. The new findings include 1) the effect of a “patch” or “cluster” of bits on
the simulation results, 2) the log-normal vs. normal distribution of the local bit density, and 3)
new results for local bit corruption in two dimensions. The theory is compared with the results
of simulations, and good agreement is found. The connection of this binary nano-bit model with
the real world is discussed, especially in the context of molecular electronics and the quantum-dot
cellular automata paradigm. With model extension such as taking into account a more realistic
correlation between bits, our hope is that this work may contribute to an understanding of the soft
error or the corruption of data stored in nano-scale devices.
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I. INTRODUCTION

With the advent of nanotechnology, the use of prop-
erties and phenomena of physical and biological systems
occurring on a nanoscale has rapidly revolutionized many
areas of interdisciplinary research, such as nanomedicine
[1–4], nanobiotechnology [5, 6] and nanoelectromechan-
ical systems [3–5, 7]. In the field of microelectronics,
the trend towards higher speeds and greater packing
densities requires scaling to smaller lithographic dimen-
sions. The nanotechnolgy revolution is having a strong
impact on nanoelectronics and molecular computing and
is leading to the replacement of conventional scaling of Si
CMOS electronic devices with single-electron transistors
(SETs) or carbon-based nanoelectronic devices. This has
made electronic components ever smaller with as a high a
capacity as possible with less power consumption [8–10].
To decrease the number of electrons used to switch MOS

∗E-mail: wtriampo@yahoo.com

transistors on a chip, the circuits are designed to operate
as binary logic gates in which a binary state is charac-
terized by the absence or presence of a single electron
or a few electrons in isolated islands. However, when
this kind of CMOS-like chip is fabricated with the num-
ber of electrons becoming ultra small (less than 1000),
one usually experiences the problem of statistical varia-
tions in the sub-threshold characteristics due to stochas-
tic single-electron tunneling causing charge fluctuations.
In dynamic random access memories (DRAMs), for an-
other example, the number of charges stored per mem-
ory cell has been decreased with the reduction of the
cell area. However, when the stored charges per bit are
further decreased, the signal becomes “less immune” to
internal noise, the leakage current, and soft errors caused
by the passage of ionizing radiation. This will interfere
with the charge held at sensitive nodes in the circuits
[11]. Therefore, for the present semiconductor industry
to produce ever-smaller memory devices, properties such
as the reliability, volatility, and power consumption must
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be of concern. As the data storage density has been in-
creased, data fidelity is subject to random noise so the
reliability or stability of a device must be considered as a
stochastic nano-bit error or as nano-bit data corruption.
One may consider ultra small bit systems as binary bit
systems consisting of bits “1” or “uncorrupted bits” and
bits “0” or “soft-error or corrupted bits” The dynam-
ics of error causing or corruption is incorporated using
simple Brownian agents and even other various kinds of
agents.

In the present work, we adopt the model introduced
by Newman and Triampo [12,13] and recast it into the
nano-bit context. The model consists of Brownian agents
(BAs) stochastically corrupting their nano-bit (ultra-
small binary bit) environment. The corrupting agents
perform random walk motion and are not affected by
their environment in any way (no landscape-feedback).
As the agents wander through the environment, they
have a certain probability to switch the value of the
nanobit at the site as they are leaving. One can also
consider the agents to be disordering agents in their en-
vironment. Rationalization and the connection to real-
world applications is considered in the next section. In
the near future, however when ever-smaller (nano-bit)
devices become more widespread, our study might be of
importance for stochastic soft-error process. The focus of
this study is the time and the length scales of corruption
due to independent BAs.

The paper is organized as follows: in Section II, we
give the details of the model, focusing on the local nano-
bit corrupting parameter at the origin, b(0, t) and its
associated probability distribution P (b, 0, t). In Section
III, we show some numerical results. We then summarize
our results and make some comments in Section IV.

II. RATIONALIZATION OF THE MODEL
AND A CONNECTION TO A

REAL-WORLD APPLICATION:
MOLECULAR ELECTRONICS

In the past decades, there has been a nearly expo-
nential growth in the capacities of silicon-based micro-
electronics [14]. According to the famous rule of thumb
proposed by Gordon Moor, co-founder of the chip man-
ufacturer Intel, which states that, the number of transis-
tors that can be packed onto a microprocessor doubles
every 1.5 or 2 years, however, it is believed that con-
ventional silicon-base computers will reach their physi-
cal limits around 2012, mainly because of fundamental
physical limitations that prevent current designs from
functioning reliably on a nanometer scale such as the
insurmountable current leakage problem of transistors.
Thus there is an urgent realization that silicon-based mi-
croelectronics are heading toward a wall. In this regard,
the challenge ahead is to find an alternative electronic
paradigm to silicon-based chips that will allow the rise
in computational power to continue (maybe slower or

faster). Molecular electronics [15] can, in principle, over-
come these limitations of silicon-based technology be-
cause single-molecule devices that are organized cheaply
in parallel by using self-assembly are possible. This is a
powerful new direction in the science and technology of
nanometer-scale devices. Simple molecular electronic de-
vices usually consist of organic molecules sandwiched be-
tween conducting electrodes, with recent demonstrations
of irreversible switches [16], large negative differential re-
sistances [17] and quantum-dot cellular automata [18–
21]. However, reaching agreement between experiments
and theory has not been straightforward. Especially, an
understanding of the molecule/electrode interface is very
crucial. So far, the field of molecular electronics is teem-
ing with results, rationalizations, and speculations. The
developments of the past few years have convinced some
within the computer industry that molecular electronics
will eventually deliver the goods. We believe that the
next-generation technologies will most likely consist of
hybrid devices combining molecular electronics and ex-
isting microelectronics.

At present, a conventional computer utilizes micro-
processors, silicon field-effect transistors (FETs). These
have three terminals: the source (input), the drain (out-
put) and the gate (control). They operate by using bi-
nary “0” and “1” bits as the “on” and the “off” states of a
current switch to store and process information. This all
happens in the hardware called a transistor. The tran-
sistor acts as a current switch to charge and discharge
capacitors to the required logic voltage levels. This con-
ventional FET paradigm has serious drawbacks as device
sizes are reduced. As the switch get smaller (about 1.5
nm), the ability and the reliability to turn the current
on and off is lower. Moreover, when the switch is smaller
in size, the current feeding through each switch is re-
duced, subsequently causing the power supply to feed
the energy to move the electron (by passing an electric
current through the circuit). This is likely to cause sig-
nificant energy dissipation that could generate a lot of
heat. This unwanted heat could damage, even melt, ther-
mally organic materials. This evidence indicates that to
ultimately reduce the size of electronic devices, a new
paradigm must be developed to take care of all the down
sides. An alternative approach will be discussed in the
following.

The quantum-dot cellular automata (QCA) are
the alternative nanostructure-compatible computational
paradigm using arrays of quantum-dot cells (“QCA
cells”) to implement a digital logic function. This scheme
is fundamentally based on the Coulomb interactions oc-
curring between neighboring cells where each cell can be
a single molecule. Unlike FETs, which use current and
voltage to encode binary information, QCAs instead use
the arrangement of individual electrons by positioning
of interacting single electrons within arrays of quantum
dots to represent binary information. This system is a
type of transistorless nanoelectronic device represented
by a structured charge container. In this paradigm, each
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Fig. 1. A schematic of a QCA cell or a two-state four-dot
cell. Due to Coulomb repulsion, the electrons, shown in red,
normally occupy antipodal sites. A “0” or “1” bit is encoded
in the charge configuration. It should be noted that the full
four-dot cell can be viewed as a pair of half-cells with two
dots each, in which the sign of the dipole alternates.

QCA cell consists of four dots or clusters localized at
the corners, or the so-called vertices, of a square. A
dot for this purpose is a region in which charge is local-
ized. When two excess electrons are added to the cell (by
charging), due to mutual electrostatic repulsive forces,
they will arrange themselves by occupying diagonal sites
so as to keep as far a part as possible. Hence, there
are two diagonal polarizations of energetically equiva-
lent bistable ground states of the cell (degeneracy); if
they were compass points, one would lie NW-SE and the
other NE-SW, which are used to represent logic “0” and
logic “1” (see Fig. 1). When, for example, an electric
field is applied, the electrons will switch sites in one set of
dots, thus inducing the switch in an adjacent set of dots
to change the polarization in a QCA cell. Experimen-
tally, the operation of a QCA can be demonstrated by
constructing micrometer-sized clusters of atoms, such as
aluminium “islands”, which can be described as “quan-
tum dot” and can store electrons. These can, for exam-
ple, be assembled on an oxidized silicon surface.

With this ultrasensitive nano-switch, we expect this
nano-bit system to be vulnerable to “fluctuations” or
“disturbances”. This is typically caused by noise, any
unwanted or obscuring signal. The noise behavior of bulk
electronic devices is dominated primarily by two noise
sources: thermal noise and Ficker (1/f) noise. Other
sources that are sometimes present in the noise spectrum
are shot noise. Using magnetic spin language, the phe-
nomenon involves generating noise which includes ther-
mal spin fluctuations and magnetic domain instabilities
(magnetization orientation fluctuation). Noise is univer-
sally encountered in semiconductors, and in many cases,
the performances of semiconductor devices are limited.
Noise in semiconductor devices refers to any unwanted
signal or disturbance in the device that degrades per-
formance. Shrinking device size implies increasing noise
and faster noise. This effect, the stronger and faster noise
and the shrinking noise margin, synergistically increase
the frequency of false bit flips when miniaturization ap-
proaches a critical size. A detailed knowledge of the

charge transport processes leading to electronics noise
and of the microscopic states involved in these processes
is necessary to reduce the noise and to improve device
performance. This is, in fact, the issue of stability and
reliability of electronic devices. In this regards, we shall
treat fluctuators as stochastic agents, such as thermal
fluctuators and photons that consistently and continu-
ously change the nano-bits in this system. It should be
pointed out with no confusion that on the scale of an
individual molecule, quantum effects might also limit re-
liability. In theory, molecular switches can operate in-
credibly quickly, with switching times measured in fem-
toseconds rather than the nanosceconds of today’s silicon
FETs, the uncertainty principle will limit the precision
with which the states of switches can be measured, and
thus the feasibility of storing and processing information.
However, the agents, as mentioned, may cause an issue
with the stability and the reliability of this sensitive sys-
tem.

III. NANO-BIT CORRUPTION MODEL
(REVISITED)

In this section, we revisit the related theoretical results
in Refs. 12 and 13 for the reader to understand investi-
gations of data corruption through simulations. For the
sake of simplicity, we begin with a model consisting of
just one agent. The process of a stochastic agent in a
nano-bit medium is first modeled on a hypercubic lattice
of dimension d = 1. In the spirit of the local rules using
a stochastic cellular automaton (SCA) [22], the process
is then defined in terms of the position ~R(t) of the BA.
At each time step, the BA makes a random jump to one
of its nearest neighbors. The spin at the site it leaves
behind is flipped. To make the discussion more famil-
iar, we will represent the stochastic binary system as an
Ising model consisting of bits “1” or uncorrupted bits,
and “−1”, or corrupted bits. We denote a randomly
chosen unit vector as ~l(t) and the time -dependent value
of the spin at site ~r as σ~r(t). Then, we have

~R(t + δt) = ~R(t) +~l(t) (1)
and
σ~r(t + δt) = σ~r(t)(1− 2δ~r, ~R(t)). (2)

Equation (2) is taken in the continuum limit viewing
the discrete spins as a coarse-grained local spin bit cor-
ruption density φ(~r, t). In other words, we are defining a
large region around the lattice site ~r and summing all the
spins in that region. The evolution of the bit corruption
density φ is then described by

∂tφ(~r, t) = −λφ(~r, t)δd(~r − ~R(t)), (3)

where λ is a phenomenological parameter that describes
how strongly the spin is coupled to the BA. This equation
may be integrated to give the explicit functional solution
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φ(~r, t) = exp[−λ

∫ t

0

dt′δd(~r − ~R(t′))]. (4)

The above solution is obtained for an initial condition
φ(~r, 0) = 1 (completely uncorrupted), which we shall use
exclusively.

For the sake of analytic simplicity, we will from now
on focus only on the one dimension case, d = 1. The
simplest quantity to be considered is the mean bit cor-
ruption density defined as

b(~r, t) = 〈φ(~r, t)〉 = Σ∞n=0(−λ)nχn(x, t), (5)

where χ0(x, t) = 1, and for n > 0,

χn(x, t) =
1
n!

〈[∫ t

0

dτδ(x−R(τ))
]n〉

. (6)

Further details and discussion can be found in Ref. 12.
With the average over the Gaussian weight, it can be
shown that

χn(x, t) =
∫ t

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτng(0, τ1 − τ2)

· · · × g(0, τn−1 − τn)g(x, τn), (7)

where g(x, t) = (2πDt)−1/2 exp(−x2/2Dt) is the prob-
ability density of the random walk and D is the diffu-
sion constant. Due to the structure of Eq. (7), which is
an n-fold convolution, we can apply a temporal Laplace
transform and have (for n > 0)

χ̃n(x, s) ≡
∫ ∞

0

dte−stχn(x, t)

=
1
s
g̃(0, s)n−1g̃(x, s), (8)

where

g̃(x, s) =
1

(2Ds)1/2
exp

[
−

(
2s

D

)1/2

|x|
]
, (9)

with g̃(x, s) being the Laplace transform of the diffusion
equation Green’s function.

Summing over these functions as formulated in Eq.
(5), we find

b̃(x, s) =
1
s

exp
[
1− λg(x, s)

1 + λg(0, s)

]
. (10)

One can invert the Laplace transform to find the average
bit corruption density as a function of x and t. Explicit
forms are given in Ref. 12, for d = 1; the form is

b̃(x, t) = 〈φ(x, t)〉 = erf

[
|x|

(2Dt)1/2

]
+exp

(
λ|x|
D

+
λ2t

2D

)
×erfc

[
λ

(
t

(2D)

)1/2

+
|x|

(2Dt)1/2

]
,

(11)

where erf(z) and erfc(z) are error functions [22]. Con-
sidering the asymptotic behavior of the above expression,
for small x, we have

b(x, t) = b(0, t) +
(

2x2

πDt

)1/2

+ · · · , x � (Dt)1/2.(12)

We find that the average bit corruption density at the
origin (x = 0), b(0, t), in Eq. (12) decays asymptotically
as

b(0, t) =
(

2D

πλ2t

)1/2[
l + O

(
D

λ2t

)]
, (13)

where O

(
D

λ2t

)
represents the correction to the order of

D
λ2t .

The above result reveals how the local spin temporally
changes to reflect the local corrupting of the system me-
diated by the stochastic agent. This analytic result will
be compared with the results obtained by the simulation.
The intermediately large x behavior of b(x, t) in Eq. (11)
has two regimes:

b(x, t) = 1−
(

2Dt

πx2

)1/2

exp
(
−x2

2Dt

)
+ · · · , (Dt)1/2 � x � λt (14)

and

b(x, t) = 1−
(

λt

|x|

)1/2(2Dt

πx2

)
exp

(
−x2

2Dt

)
+ · · · , x � λt. (15)

To make the model closer to a real-world application, we
assume the agents to be non-interactive; i.e., they are
unaware of each other’s immediate presence. The non-
trivial statistics stem from the fact that the disordering
effects of the BAs statistically interact through the over-
lap of the BAs’ histories. A single BA interferes with the
previous disorder it has created; consequently, the cor-
ruption does not linearly increase in time. When many
Brownian agents are introduced, each can disturb the
corruption that another agent has created. As a result,
the effect is more severe when many Brownian agents are
present. The extension to many BAs is modeled within
continuum theory. N independent Brownian Agents are
introduced, and each can be described by position vector
Rα(t), with α = 1, 2, · · · , N .

The equation of motion of the coarse-grained bit cor-
ruption density by N agents, φ(N)(r, t), takes the form

∂tφ
(N)(r, t) = −λφ(N)(r, t)

N∑
α=1

∆l(r −Rα(t)), (16)

with the solution

φ(N)(r, t) = ΠN
α exp

[
− λ

∫ t

0

dt′∆l(r −Rα(t))
]
. (17)
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On averaging over the path of the N agents, a particu-
larly simple result of Eq. (16) is

b(N)(r, t) = 〈φ(N)(r, t)〉 =
[
b(l)(r, t)N

]
. (18)

One can see that the local corruption density due to N
agents is simply the Nth power of that due to one agent.

We now consider the probability distribution function,
P (b, x, t), of the local corrupted bit density. This func-
tion will provide information on the time evolution of the
probability distribution that describes the local corrup-
tion behavior. Obviously, at very early time, the peak of
the distribution is supposed to be in the vicinity of the
origin. The complete analytic structure of b(x, t;λ) is re-
quired to reconstruct the distribution function P . This
suggests that by knowing the first moment of the cor-
ruption density, we can generate higher moments. There-
fore, we can reconstruct the probability density function.
We define P via

P (b, x, t) = 〈δ(b− bR(x, t))〉, (19)

where bR(x, t) is the stochastic field solution given in Eq.
(13). We can express the δ function by using a frequency
integral, and then we can expand it in powers of the field
as follows:

P (b, x, t) =
∫ ∞

−∞

dω

2π
e−iωb〈eiωbR(x,t)〉

=
∫ ∞

−∞

dω

2π
e−iωb

∞∑
n=0

(iω)n

n!
〈bR(x, t)n〉

=
∫ ∞

−∞

dω

2π
e−iωb

∞∑
n=0

(iω)n

n!
〈b(x, t;nλ)〉. (20)

We next take the Laplace transform of b(x, t;nλ) . From
Eq. (10), we have

b(x, s;nλ) =
1
s

[
1− nλĝ(x, s)

1 + nλĝ(0, s)

]
=

g(0, s)− g(x, s)
sg(0, s)

+
g(x, s)

sg(0, s)[1 + nλg(0, s)]
. (21)

The first term is easily handled as it is independent of
n. Thus, the sum over n for this yields a factor eiω,
which yields a factor δ(1 − b) when integrated over ω.
The second term is more interesting. For the details of
how to perform the sum over n, we refer to Ref. 12. The
final result for P̂ (b, x, s) is

P̂ (b, x, s) =
g(0, s)− g(x, s)

sg(0, s)
δ(1− b)

+
g(x, s)
g(0, s)2

1
sλb

× exp
[
− 1

λg(0, s)
ln

(
1
b

)]
. (22)

To this end, we need the explicit form for ĝ(x, s) which
is given by Eq. (9). Inserting this into Eq. (22) and
inverting the Laplace transform, we have our final result:

P (b, x, t) = δ(1− b)erf
[

|x|
(2Dt)1/2

]
+

1
(πt)1/2

1
λ̃b

× exp{−
[

|x|
(2Dt)1/2

− ln b

2λ̃t1/2

]2

}, (23)

where erf(z) is the error function [22] and λ̃ =
λ/(2D)1/2. In particular, the probability distribution
for the average bit corruption density at the origin takes
the form

P (b, 0, t) =
1

(πt)1/2

1
λ̃b
× exp{

[
− ln(b)2

4λ̃2t

]
}, (24)

which is a log-normal distribution.
If the asymptotic behavior of b(0, t) is taken as b(0, t) ∼

1√
t
, P (b, 0, t) in Eq. (24) becomes

P (b, 0, t) =
1

√
πλ̃

× exp{− 1
4λ̃2t

[
ln

1√
t

]2

}

× exp{− (ln t)2

t
} = exp{− 1

144t
− 1

6t2
− 3

4t3

+
26
9t4

+ O

(
1
t5

)
} × exp{−1

t
} = exp{−

(
1√
t

)2

}

= exp{−b2} (25)

which is the normal distribution, where O

(
1
t5

)
is the

correction to order 1
t5 . We now claim that the log-normal

distribution approaches normality when t is infinitely
large.

So far we have derived the local data bit corruption
density and its probability distribution. In the next sec-
tion, we shall focus mainly on the Monte Carlo simula-
tion of b(0, t) and its associated probability distribution
P (b, 0, t) to explain our analytical finding. We then recap
the analysis of the case of two dimensions [13]. Firstly,
b(0, t) was derived by using four different methods. One
of them is the infinite-order perturbation theory of

φ(~r, t) = exp
[
−λ

∫ t

0

dt′∆l(~r − ~R(t′))
]

, (26)

which was analyzed in Ref. 12 as Eq. (4) by using a Dirac
delta function in place of a sink function ∆l(~r − ~R(t′)).
The sink function was used to avoid the difficulty of re-
summing the perturbation series. A short-time cut-off t0
was introduced to regularize each term in the perturba-
tion theory, which allowed one to extract the dominant
contribution from each term in the perturbation expan-
sion and then to resume the series. According to this
method, b(0, t) in two dimensions was found to be

b(0, t) =
1

1 + λ̃ log(t/t0)
, (27)

where t0 = 2l2e−κ

D , (κ = 0.57721 · · · is the Euler’s con-
stant) and λ̃ = λ

2πD .
The calculation of the probability of the coarse-grained

local bit corruption density at the origin φ(0, t) started
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with the property 〈φ(0, t;λ)n〉 = 〈φ(0, t;nλ)〉 of the con-
tinuum theory in Eq. (26).

The known λ dependence of the first moment of φ(0, t)
provided an easy way to reconstruct all the moments
based on the above property and, thus, the probability
density P (φ, 0, t). The calculation of P (φ, 0, t) is similar
to one in one dimension with the accurate form of φ(0, t).
If one considers b(0, t) in Eq. (27) as b(0, t) = 1

λ̃ log t

and uses it to calculate P , one obtains a distribution
P = b(0,t)

φ which is singular at φ = 0. Thus, the sub-
leading correction to b(0, t;λ) is very crucial to calculate
the distribution correctly. The form of b(0, t) in Eq. (32)
in Ref. 13 is preferable for constructing P in that it con-
tains the explicit form of ω(λ̃). However, the compli-
cated nature of ω makes the reconstruction of P hard to
achieve.

Eq (32) in Ref. 13:

b(0, t) =
1

ω(λ̃) + λ̃ log(t/τ)
(28)

coincides with Eq. (27) in the case of small λ giving
ω(λ̃) ≈ 1 and the Laplace transform for b(0, t):

b̃(0, s) =
1
s

[
1

1− λ̃ log( s
s0

)

]
. (29)

The reconstruction of P is possible from Eq. (27) and

Fig. 2. Schematic of a system of juxtaposing cells in linear
array (QCA wire). This can be used to represent a molecular
or nano-bit array. Note that, typically, the electrons do not
move from cell to cell, but each cell can “communicate” via
a intercellular Coulomb interaction. By incorporating the
stochastic corrupting agent(s), the state of the cell may be
switched as the agent passes by. In other words, the po-
larization of the QCA cell can be oppositely induced by a
stochastic agent, such as a quantum particle of heat or an
electromagnetic wave.

(29), and one finds

P (φ, 0, t) = β(t)φβ(t)−1, (30)

where β(t) = 1/λ̃ log(t/t0). The probability distribution
function in Eq. (30) is not singular at finite times and
approaches the form b(0, t)/φ when t →∞.

IV. MONTE CARLO SIMULATION RESULTS

Our aim in this section is to show the validity of our
theoretical results obtained in the previous section. To
do so, we have performed Monte Carlo simulations of
the discrete model defined in Section III. All results are
obtained for a one-dimensional (d = 1) chain and a two-
dimensional (d = 2) square lattice of binary bits which at
each site can take either the value 1 (spin up) or −1 (spin
down). The system size is considered negligible so long
as one ensures that the BA never touches the bound-
aries in any of its realizations up to the latest time at
which data are extracted. Thus, the system is infinitely
large. We performed an average of over 106 realizations
(or runs) with each run starting with the same initial
configuration; namely, all spins are pointed up except
the spin of the starting point of the BAs, which is set
to be −1 (down) in order that immediately after all the
BAs have moved away, the spin at the starting point has
value = 1 as shown in Fig. 3, the illustration in one di-
mension. Then, N random walk agents are introduced to
the starting point (origin). At each Monte Carlo step, all
N agents randomly walk to either one of its 2d neighbor-
ing sites and flip the spin of visited site before leaving.

Fig. 3. Illustration of the data corruption processes for
dimension (d) = 1, hopping rate of (p) = 1, and flipping rate
of (q) = 1. The initial uncorrupted state is shown on the
second row, with the BA being represented by a filled circle.
From the top, we show a typical walk of 4 steps. The BA
switches a bit each visit, so those bits visited for an even
number of times are restored to their original values.
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Fig. 4. Illustration of a patch (shaded region) in (a) a one-
dimensional infinite system and (b) two-dimensional infinite
system representing the origin. The starting points of the
agents are at the boundary of the patch.

We let the BAs corrupt the system independently with
the consequence that multiple occupancies are allowed.
We focused on the local corruption at the origin, so we
measured the average bit corruption density at the ori-
gin denoted by b(0, t), where the BAs started corrupting
the system. As mentioned, it makes no sense to measure
moments of individual spins at the origin because an odd
visit at the origin by a BA gives −1 while an even visit
yields unity. As a result, the distribution for the average
bit corruption density at the origin is not consistent with
the analytic results obtained by using continuum theory.
Therefore we defined a coarse-grained bit corruption over
a patch containing 20 spins for one dimension, Fig. 4(a),
and over a patch containing 121 spins for two dimensions
(perviously used in Ref. 13), Fig. 4(b), representing the
bit at the origin to produce some results that can be
compared to theoretical ones. The patch size considera-
tion in two dimensions will be stated in Section IV. The
patch size is chosen arbitrarily as a compromise between
computational performance and a realistic time scale and
length scale for the dynamics. In fact, we have varied the
patch size and found a patch of 20 bits is somehow the
optimal one. In addition, the agents are initially allo-
cated evenly on both ends of the patch to avoid internal
decimation by the transient motion of the agent. We
investigated and obtained many meaningful results and
new simulation strategies.

1. One Dimensional

A. Time-regime Observation

In Fig. 5, over the same patch size of 20 due to 5
BAs, the origin is corrupted more often by one or more
walkers. It also becomes more difficult to obtain data
for time spanning more than one decade. One arrives
at a compromise between the patch size and the number
of walkers to obtain a longer span in each time regime
byrealizing that in order for a BA to wander twice the
distance, it will take 4 times as long to reach the distance

Fig. 5. Log-log plot of the average bit corruption density
at the origin b(0, t) versus time for d = 1, p = 1, and q = 1
due to 5 BAs. The approximate crossover times from regime
I to regime II and from regime II to regime III are shown,
respectively, on the t axis at the intersections of the straight
lines.

[23]. Nevertheless, in Fig. 5, we can see a crossover from
a scaling regime when t = 103; the values of b(0, t) are
very close to zero with high fluctuations. A typical plot of
the time evolution of the average bit corruption density
will have three regions separated by two crossover times.

Now, we will consider the long time spatial behavior
for small x (a site close to the origin). From Eq. (12)
we have limt→∞ b(x, t) = limt→∞ b(0, t) = 0 when x =
(Dt)1/2. These time limits imply that the BA always
corrupts the bits in small region around the origin in
an oscillatory manner, forward and backward, instead
of moving away in a forward direction. Moreover, the
BA will never visit sites x further than (Dt)1/2 from
the origin. This is proven by limt→∞ b(x, t) = 1 when
x = (Dt)1/2.

B. A Compromise on the Patch Size

The results in Fig. 6 show simulations of the time evo-
lution of the bit corruption density at the origin b(0, t)
for different patch sizes. Eq. (13) predicts that b(0, t)
will decay as 1/

√
t = t−0.5 when t is not infinitely large.

If logarithmic scales are used, the power law dependence
is seen as a straight line. From the simulated results in
Fig. 6 at early time, there is no simple scaling form for
b(0, t) for any patch size. The small-time behavior of the
random walk is transient in the early time regime (regime
I). This regime can be seen to be less than a decade in t.
When t = 102, the average bit corruption density at the
origin b(0, t) over a patch size of 20 decays as t−0.4936.
The exponent calculated in the last two decades of the
log-log plot (for the optimal fit) leads to the theoretical
scaling b(0, t) ∼ t−0.5. All further simulations will be
done for a patch of 20 bits. Therefore, the patch size
should be taken into account to gain higher quality re-
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Fig. 6. Log-log plot of the average bit corruption density
at the origin b(0, t) versus time for a patch size of 10, 11, 20,
30, and 33 for d = 1, p = 1 and q = 1 due to 1 BA. The arrow
shows the increment of the patch size.

sults because it affects the time scale for a random walk
to wander from patch to patch. The time regime in which
the power law is extracted is the so called scaling regime
or intermediate time regime (regime II). b(0, t) crosses
over from the transient regime to the scaling one at the
crossover time. The long time behavior of Eq. (13) is
limt→∞ b(0, t) = 0. This shows the infinitely-long-time
regime (regime III). Because of the considerably large
time consumption and the trivial dynamic, we have not
made infinitely long runs in regime III.

C. The Corruption Process Due to N Independent
Agents

We have extensively investigated the cases of more
BAs. The results are shown in Fig. 7. We present b(0, t)
from the early time regime to the scaling regime to show
the stepping over and to verify Eq. (18). From Eq. (18)
the average bit corruption density by two agents is given
by [b(1)(0, t)]2 = [b(0, t)] ∼ [t−0.5]2 = t−1. We reconsider
b(N)(0, t) in Eq. (21) as b(N)(0, t) ∼ tγ .

The numerical values of γ due to the results shown in
Fig. 7 are presented in Table 1 along with the results
from our computer simulations.

A higher power law decay of b(0, t) with two agents is
found from Fig. 7, b(0, t) decays more rapidly (t1.0104)
than it does for a single agent. Since the BAs starting
from the same origin are independent, the spreading of
the 2 BAs is symmetrical about the origin, and the mean
position of BAs does not change from step to step, but
remains 0 [6]. The BAs always return to the origin [23].
As a result, the origin is corrupted more frequently, and
the early-time and scaling regimes are shorter when we
have more agents. The average number of distinct sites
N BAs have visited at time t is

√
t lnN , where N is

large [24]. The entire span of N BAs still appears in

Fig. 7. Log-log plot of the local bit corruption density at
the origin b(0, t) versus tim for d = 1, p = 1, and q = 1 due to
1, 2, 3, 4, 5, 6, 16, and 32 BAs. The arrow shows the incre-
ment in the number of BAs. The dashed lines have slopes of
−0.4992, −1.0104, −1.4999 and −1.9487, respectively, along
the direction of the arrow and show the range of time over
which the exponent is extracted.

Table 1. Predicted values of γ compared with simulated
values. The numbers in parentheses are the values of R2 from
the linear regression fitting data in Fig. 7.

N γtheory γsimulation

1 −0.5 −0.4936 (1.0000)

2 −1.0 −1.0104 (0.9992)

3 −1.5 −1.4999 (0.9952)

4 −2.0 −1.9487 (0.9977)

the factor
√

t. They corrupt a bit within the finitely
bounded region. So far, in the cases of 3 and 4 BAs, the
scaling forms extracted from the simulation results are
b(3)(0, t) ∼ t1.4999 and b(4)(0, t) ∼ t−1.9487, respectively,
which are in good agreement with the theoretical results.
The conventional scaling in Eq. (18) holds. The scaling
regime in case of more than 4 BAs is less than one decade
in t. To extract the scaling, we have to enlarge the patch
size and run the simulation for a long enough time to
gain a longer span of data in the scaling regime. The
probability that the origin has been visited by at least
one of the N BAs is 1 when N is enormously large [24].
This indicates that the origin is strongly corrupted when
many agents are introduced to the system.

D. The Probability Distribution for b(0, t)

The results in Fig. 8 (a)-(d) are given to show the
probability distribution of all possible values of b(0, t)
due to one and more uncorrelated BAs. To find the pos-
sible asymmetry of the probability distribution function
around the mean, we considered the first index of the
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Fig. 8. Simulated probability distribution for the average bit corruption density at the origin, b(0, t) for d = 1, p = 1, and
q = 1 due to (a) 1, (b) 2, (c) 3, (d) 4, (e) 16, and (f) 32 BAs starting at the boundary of the patch.

shape, called the “skewness coefficient” which is defined
as the standardized third central moment [25]. The skew-
ness coefficient of a normally distributed random variable
b is α3(b) = µ3/(

√
µ2)3, where µ2 and µ3 are the second

and the third central moments of b, respectively. If the
distribution is symmetric around the mean, then α3 = 0;
the converse is not true.

We reproduced the data with a single BA as shown
in Fig. 8(a). In the early time regime when t = 102,
the simulated probability distribution for b(0, t) due to
one agent is log-normal (Eq. (24)). The distribution
curve has a robust tail for values of average bit corrup-
tion density close to unity; i.e., for b(0, t) = 0.8, most
of the time only 2 bits in the patch are corrupted. The
fact that BA on a one-dimensional lattice always returns
to the origin [26] is critical for this event. Surprisingly,
at a large time t = 105, the distribution has completely
changed from log-normal to normal. The peak occurs
when b(0, t) = 0 with probability 0.1675. The distribu-
tion is also normal at a larger time of t = 106 with the
peak taking place at b(0, t) = 0 with probability 0.1746.
An important feature of this distribution unambiguously
points out that realizations where the spins at the origin
will be half corrupted and half uncorrupted will have the
highest probability of occurrence.

In the case of two BAs with one BA at each edge of

the patch, in the distribution for b(0, t) at t = 102, the
peak is shifted to the left to b(0, t) = 0.1, very close to
0, and the robustness disappears. Also, we mostly find
that 9 out of 20 bits are corrupted. Not as expected,
the origin is more strongly corrupted, and the overlap of
the path of the individual agent should be appropriate
for a description of this event. All distributions at t ≥
104 become normal and coincide. For 3 and 4 BAs, the
distributions for b(0, t) approach normality earlier than
they do for 1 and 2 BAs with the same features. The
shapes of the distribution at the last three times look
very symmetric and have a skewness coefficient very close
to 0.

In Fig. 8 (e) and (f) with larger number of BAs, we see
that the probability distribution for b(0, t) approaches
normality at smaller times, obviously faster than it does
for the case of a small number of BAs. It is clearly seen
that as more agents are considered, the faster the dis-
tribution function will approach normality. This reflects
the high fluctuation of the BAs. Another way to put it is
that the BAs wander within the space of an approximate
length of

√
t lnN from the origin. To distinguish two

symmetric distributions with respect to their peaks and
tails, we consider another shape index called the “Kur-
tosis coefficient” which is defined as α4(b) = µ4/(µ2)2,
where µ4 is the fourth central moment of b. The nor-
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mal distribution f(x; θ) = 1
σ
√

2π
exp[−(x−µ)2

2σ2 ], where
θ := (µ, σ2) ∈ < × <+, and x ∈ < has µ4 = 3. The
16 and 32-BA probability distributions at all times have
common Kurtosis coefficients of µ4 ∼ 2.9 which means
that they have the same peak (mean values) relative to
the shapes of the tails and that their peaks are slightly
flatter than normal. The peaks of all normal distribu-
tions are at b(0, t) = 0 with the probability bounded from
above at 0.18. The essential features of the asymptotic
distribution are independent of time and the number of
the Brownian agents. In all cases, for large time, the
observed probability of having the origin completely cor-
rupted or uncorrupted-the probability that all spins of
the origin are pointed down or up- is extremely close to
0. This agrees with the heuristic expressions in Eqs. (4)
and (5). This is in good agreement with the fact that
the average bit corruption density at the origin decays
asymptotically as predicted by Eq. (13).

2. Two Dimensional

A. The Patch Size Effect on the Simulation Results

In Eq. (27), due to one BA, b(1) = 1/[1 + λ̃ log(t/
t0)] ∼ 1/[A + λ̃ log t ∼ C

′

1/ log t]. On the other hand,
1/b(1) ∼ C1 log t, so the plot of 1/b(1) against log t gives
a straight line. We have tried measuring b(0, t) due to one
agent at the origin (single site) and on different patches
of 9, 25, 49, 81, and 121 bits. In Fig. 9, we investi-
gate the effect of the patch size and find different values
of constant C1 in the above equation. Presumably the
patch size affects only the prefactor C1. The patch size
has no significant effect on the logarithmic time depen-

Fig. 9. Plot of 1/b(0, t) due to 1 BA versus log t over a
square patches of 1, 9, 25, 49, 81, and 121 bits for d = 2,
p = 1, and q = 1. The arrow shows the increment of patch
size. The thick straight lines have slopes of 1.507, 0.9585,
0.6590, 0.5335, 0.4652, and 0.417 , respectively, (from top to
bottom).

dence of b(0, t). We then choose the patch of 121 bits
to simulate b(0, t), which was considered to be practical
for the measurement of the probability distribution for
b(0, t) we looked forward to.

B. The Logarithmic Time Dependence of b(0, t)

To approach the practical application closer, we per-
formed two-dimensional simulations similar to the one-
dimensional ones; we measured the bit corruption den-
sity at the origin represented by square patch of 121 bits,
b(0, t), due to 1 to 4 BAs. In the case of one agent, the
plot of 1/b(1) against log t gives a straight line, as shown
in Fig. 10(a). We know from Eq. (18) that b(N) = [b(1)]N
in the case of 2 BAs, so we find that b(2) ∼ (C1)2(log t)2
or 1/b(2) ∼ C2(log t)2. This is verified by a plot of 1/b(2)

versus (log t)2, which can be fitted by a straight line.
Inductively, we have 1/b(N) ∼ CN (log t)N , where the
Ci, i = 1, · · · , N, are constants. The plot of log[1/b(N)]
against log[(log t)N ] in Fig. 10(e) for infinitely large
times has the same slope for any number N of indepen-
dent agents.

With more BAs lined up on the boundary of the
patch, the decay of 1/b(0, t) is shown again in Fig. 10(c)
and 10(d) to be proportional to the Nth power of logt.
The local bit corruption density at the origin, b(0, t), in
one and two dimensions have a common N dependence
but in different manner. The decay in one dimension,
b(N)(0, t) ∼ (

√
t)N , is drastically higher than two dimen-

sions, b(N)(0, t) ∼ (log t)N , due to fewer paths of the BAs
returning to the origin [24].

C. Probability Distribution for b(0, t) due to N Inde-
pendent Agents

The probability distribution for b(0, t) due to one
BA in Fig. 11(a) agrees with the results in Ref. 13,
which show three behavior sets by a crossover time
β(t∗) = 1. At small t � t∗, the distribution has
the most weight near b = 1. Then, for intermediate
t ∼ t∗, b(0, t) is uniformly distributed over the entire
interval of b. For large t � t∗, the distribution curve
is positively skewed and approaches the form 1/b(0, t).
This crossover disappears from the case of multiple
BAs in Fig. 11(b)-(f). From early to late time, the
skewness of the distribution curve changes from negative
to positive, and the skewness coefficient decreases when
the more BAs are introduced. At large time with 16
BAs and all time with 32 BAs the distribution curves
are symmetric (the Skewness coefficients are very close
to 0) about the mean b(0, t) = 0 and have the common
Kurtosis coefficients α4 ∈ [2.95, 3.01] very close to 3.
This implies that they have about the same peak and
tail shapes.
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Fig. 10. (a)-(d) are plots of 1/b(N) versus (log t)N due to N = 1, 2, 3, and 4 BAs, respectively, and (e) is a plot of log[1/b(N)]
versus log[(log t)N ] for N = 1, 2, 3, and 4; d = 2, p = 1, and q = 1.

Fig. 11. Simulated probability distribution for the average bit corruption density at the origin, b(0, t) for d = 2, p = 1, and
q = 1 due to (a) 1, (b) 2, (c) 3, (d) 4, (e) 16, and (f) 32 BAs starting at the boundary of the patch.
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V. SUMMARY AND CONCLUSION

We have introduced and solved a model in which BAs
interact with a binary nano-bit system. We have focused
on the local corruption at the origin where the BAs start.
We have performed computer simulations to calculate
b(0, t) for different patch sizes, which is regarded as a
continuous approach. We found that a patch of 20 bits
gave the optimal result for the scaling behavior of b(0, t)
with regard to the computation run time and the patch
size. In the simulation results, the power law scaling in
the scaling regime due to 1 – 4 BAs obeys the relation
b(N)(r, t) = [b(1)(r, t)]N - in good agreement with the pre-
dictions of the continuum model. In brief, b(0, t) depends
sensitively on the number of BAs in terms of the overlap
of the paths of different walkers and how often the BAs
visit the patch [24]. In order to see the time evolution
of b(0, t) when there are more than 4 BAs in this regime
and to extract the power law scaling over more than one
decade, one has to compromise between the size of patch
and the number of BAs. The decay of b(0, t) due to BAs
is not linearly proportional to b(0, t) due to 1 BA, but
instead it goes as the Nth power of b(0, t). The origin
is strongly corrupted by multiple BAs because all of the
independent BAs always return to the origin and cor-
rupt its spin. N agents which are non-interacting will
interfere strongly with each other; in other words, their
histories overlap. When time is infinitely large, b(0, t)
approaches 0, which implies a 50 % chance of finding the
site to be spin up or down. This agrees with the time
limit of b(0, t). The fluctuation at this equilibrium is
relatively large compared to that in the scaling regime.

We then investigated how often all possible values of
the corruption at the origin occur. This was found by
looking at the probability distribution for b(0, t) at par-
ticular times. For the case of 1 BA, in the early time
regime, the distribution is log-normal with a robust tail
at a value near 1. This reveals an extreme fluctuation
at the origin and a high probability that the origin will
only be slightly corrupted. The distribution approaches
normality as time proceeds, with the highest probability
occurring at b(0, t) = 0. This means that the origin is
steadily corrupted. The distribution approaches a nor-
mal distribution quicker when there is more than one
BA. In the long-time limit, P (b, 0, t) converges to a nor-
mal distribution. The peak of the normal distributions
remains at the same place, at b(0, t) = 0. In contrast to
b(0, t), the characteristics of the normal distributions are
independent of N and time.

In two dimensions, we found that the patch size af-
fected only the prefactor of the time evolution of b(0, t),
not its feature. The average bit corruption at the origin
due to agents decayed as the inverse of the Nth power of
log t, which is slower than that in one dimension due to
the boarder region the BAs can wander through and to
the BAs returning to the origin less often [24]. This af-
fects the shape of the probability distribution curves. For

the same number of BAs, the time evolution of the dis-
tribution in two dimensions approaches normality slower
than it does in one dimension. The investigation and the
conclusion in our study provide insight into one specific
example of stochastic binary nano-bit corruption medi-
ated by a random or Brownian agent. They should be
helpful to future researchers who wish to study data cor-
ruption for the purpose of increasing the reliability or
stability of a nanodevice.

The application of the models is wide open. There are
many directions for further work; foremost among them
are

1. calculating other local and global parameter den-
sities,

2. calculating the correlation function or the structure
factor,

3. investigating the universality of the corruption pro-
cess, and

4. studying the case of biased agents and other gen-
eralized couplings

to make a stronger connection to practical processes or
to real-world applications on soft-error reduction.

Finally, we want to remark that this work is at least
an extensive investigation of noise or fluctuations caused
by a Gaussian fluctuator and non-equilibrium statisti-
cal mechanics in nano-electronic systems. This study
of “statistical-mechanical electronics” spans two disci-
plines, statistical physics and molecular electronics sys-
tem, and leads to a general picture that bridges these two
disciplines. We believe and hope that our work has sci-
entific, engineering, and computer implications. Scientif-
ically, this work is an extensive study of non-equilibrium
statistical mechanics via a stochastic process in the con-
text of a molecular bit or nano-bit system, which will
make several significant contributions to the understand-
ing of noise processes in nano-electronic devices. The
technological importance is a demonstration of how the
fundamental physical considerations evolve to practical
high-performance novel electronic designs.
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